

## CATALOG & PRICING

| Cat. #  | Description            | Size   |
|---------|------------------------|--------|
| 636-50  |                        | 50 mL  |
| 636-100 | Use with HRP in        | 100 mL |
| 636-200 | chemiluminescent ELISA | 200 mL |

### BACKGROUND

Enhanced chemiluminescence (ECL) substrates are used with horseradish peroxidase (HRP)conjugated secondary antibodies to detect protein abundance in immunoassays. HRP catalyzes luminol oxidation in the presence of hydrogen peroxide, producing light that can be detected by an X-ray film, digital imager or chemiluminescence plate reader.

PiQ<sup>™</sup> ECL Substrate Kit is formulated with proprietary enhancers that significantly increase the intensity and duration of light emitted. The PiQ<sup>™</sup> ECL reagents are ultrasensitive and suitable for detecting proteins at the picogram level. When using these reagents in Western blotting, the recommended dilutions for primary and secondary antibodies are 1:5,000 and 1:50,000, respectively. We also tested this product in chemiluminescent ELISA, it outperformed other commercially available ECL reagents by generating much stronger signals with a relative low background.

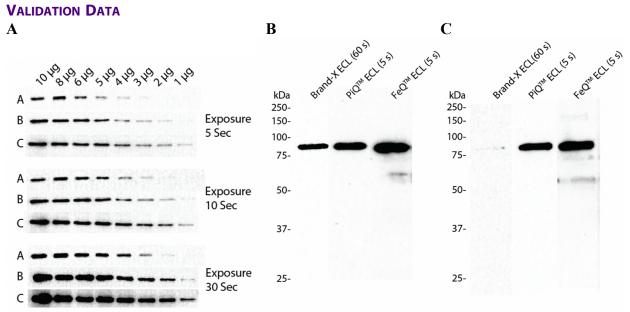
#### **PRODUCT FEATURES**

- Superior performance in generating extremely intense signals
- Suitable for detecting low-abundance analytes
- Optimized for Western blotting and chemiluminescent ELISA

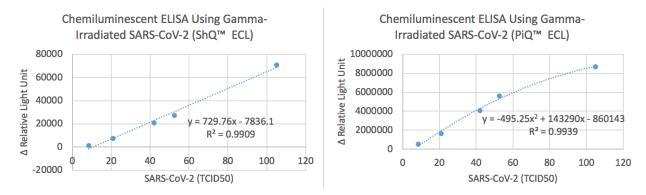
#### **S**TORAGE

Stable at 4°C for at least 1 year.

#### **KIT COMPONENT**


Equal volume of Reagents A and B

#### **EXPERIMENTAL PROTOCOL**


- 1. Let the ECL reagents warm up at room temperature for approximately 30 min prior to use.
- 2. Combine Reagents A and B at a ratio of 1:1. Vortex to mix.
- 3. Apply the mixture to the Western blots or microplate wells.
- 4. Immediately capture signals with a digital imager or chemiluminescence plate reader.

# **APPLICATION TESTED**

Western Blotting Chemiluminescent ELISA



**Figure 1.** Comparison of the sensitivity of PiQ<sup>TM</sup>, FeQ<sup>TM</sup>, and a commercial ECL kit (Brand-X). (**A**) HEK293 cell lysates were separated by SDS-PAGE and blotted with an anti-ACTB antibody (Cat# 1171, 1:2,000) and an HRP-conjugated goat anti rabbit IgG secondary antibody (Cat# 202, 1:2,000). Thirty micrograms of HeLa (**B**, human) and DF-1 (**C**, chicken) cell lysates were blotted with an anti-RRM1 (Cat#9651, 1:1,000) antibody and an HRP-conjugated goat anti rabbit IgG secondary antibody (Cat# 202, 1:2,000). **Note**: Due to weak cross-reactivity of the antibody with chicken RRM1, brand-X ECL failed to pick up the band on the Western blot, yet the PiQ<sup>TM</sup> and FeQ<sup>TM</sup> ECL can detect the protein with a strong band.



**Figure 2.** Comparison of ShQ<sup>TM</sup> ECL and PiQ<sup>TM</sup> ECL sensitivity in chemiluminescent ELISA. Different concentrations of gamma-irradiated SARS-CoV-2 viruses were lysed in the Viral Lysis Buffer (Cat# VL101) and coated (150  $\mu$ L) on microplate wells. A rabbit monoclonal anti-N primary (Cat# VYN7, 1:10,000) and an HRP-conjugated highly cross-adsorbed goat anti rabbit IgG secondary antibody (Cat# 202, 1:20,000) were used to detect SARS-CoV-2 N protein. ShQ<sup>TM</sup> ECL (Cat# 707) and PiQ<sup>TM</sup> ECL (Cat# 636) Substrate Kits were used to generate chemiluminescent signals. RLU, relative light unit.  $\Delta$ RLU = RLU of the well with the primary antibody - RLU of the corresponding well without the primary antibody, everything else being equal. **Note**: When the antigen is abundant, ShQ<sup>TM</sup> ECL is a better choice based on linear regression data.

|                         | ShQ <sup>TM</sup> ECL |           |              | PiQ <sup>™</sup> ECL |         |              |
|-------------------------|-----------------------|-----------|--------------|----------------------|---------|--------------|
|                         |                       |           |              | w/o 1st              | w/1st   |              |
|                         | w/o 1st Ab            | w/ 1st Ab | $\Delta RLU$ | Ab                   | Ab      | $\Delta$ RLU |
| Lysis buffer            | 3056                  | 2927      | -129         | 130727               | 137531  | 6804         |
| Lysis buffer w/o 2nd Ab | 2860                  | 2607      | -253         | 122382               | 127826  | 5444         |
| 105 TCID50 SARS-CoV-2   | 2781                  | 73695     | 70914        | 128401               | 8817960 | 8689559      |
| 52.5 TCID50 SARS-CoV-2  | 2987                  | 30316     | 27329        | 134264               | 5748869 | 5614605      |
| 42 TCID50 SARS-CoV-2    | 2726                  | 23527     | 20801        | 128083               | 4198178 | 4070095      |
| 21 TCID50 SARS-CoV-2    | 2767                  | 10342     | 7575         | 131388               | 1797070 | 1665682      |
| 8.4 TCID50 SARS-CoV-2   | 2901                  | 4143      | 1242         | 129277               | 635622  | 506345       |

**Table 1.** Comparison of ShQ<sup>™</sup> ECL and PiQ<sup>™</sup> ECL sensitivity and background noise.

#### Notes:

1. Different concentrations of gamma-irradiated SARS-CoV-2 viruses were lysed in the Viral Lysis Buffer (Cat# VL101) and coated (150 μL) on microplate wells.

2. A rabbit monoclonal anti-N antibody (Cat# VYN7, 1:10,000) and an HRP-conjugated highly cross-adsorbed goat anti rabbit IgG secondary antibody (Cat# 202, 1:20,000) were used to detect SARS-CoV-2 N protein.

3. ShQ<sup>TM</sup> ECL (Cat# 707) and PiQ<sup>TM</sup> ECL (Cat# 636) Substrate Kits were used to generate chemiluminescent signals.

4. RLU, relative light unit.  $\Delta RLU = RLU$  of the well with the primary antibody - RLU of the corresponding well without the primary antibody, everything else being equal.