CATALOG \& PRICING

Cat. \#	Description	Size
$\mathbf{7 0 7 - 5 0}$		50 mL
$\mathbf{7 0 7 - 1 0 0}$	Use with HRP in chemiluminescent ELISA	100 mL
$\mathbf{7 0 7 - 2 0 0}$		200 mL

BACKGROUND

Enhanced chemiluminescence (ECL) substrates are used with horseradish peroxidase (HRP)conjugated secondary antibodies to detect protein abundance in immunoassays. HRP catalyzes luminol oxidation in the presence of hydrogen peroxide, producing light that can be detected by an X-ray film, digital imager or chemiluminescence plate reader. ShQ ${ }^{\text {TM }}$ ECL Substrate Kit is proprietarily formulated for chemiluminescent ELISA test. Compared to ultrasensitive PiQ ${ }^{\text {TM }}$ ECL, ShQ ${ }^{\text {TM }}$ ECL Substrate Kit delivers superior performance by generating an extremely low background.

Product Features

- Superior performance with an ultra-low background
- Suitable for detecting highly abundance analytes
- Ready-to-use kit with easy-to-follow instructions

Storage

Stable at $4^{\circ} \mathrm{C}$ for at least 1 year.

Kit Component

Equal volume of Reagents A and B

Experimental Protocol

1. Let the ECL reagents warm up at room temperature for approximately 30 min prior to use.
2. Combine Reagents A and B at a ratio of 1:1. Vortex to mix.
3. Apply the mixture to the microplate wells.
4. Immediately read the relative light unit (RLU) of the chemiluminescence signals using a chemiluminescence plate reader.

Application Tested

Chemiluminescent ELISA

Recommended Antibody Dilutions

Primary antibody: 1: 5,000-1:10,000
Secondary antibody: 1: 10,000-1:20,000

Validation Data

Figure 1. Comparison of $\mathrm{ShQ}^{\mathrm{TM}} \mathrm{ECL}$ and $\mathrm{PiQ}^{\mathrm{TM}}$ ECL sensitivity in chemiluminescent ELISA. Different concentrations of gamma-irradiated SARS-CoV-2 viruses were lysed in the Viral Lysis Buffer (Cat\# VL101) and coated ($150 \mu \mathrm{~L}$) on microplate wells. A rabbit monoclonal anti-N primary (Cat\# VYN7, 1:10,000) and an HRP-conjugated highly cross-adsorbed goat anti rabbit IgG secondary antibody (Cat\# 202, 1:20,000) were used to detect SARS-CoV-2 N protein. ShQ ${ }^{\text {TM }}$ ECL (Cat\# 707) and PiQ ${ }^{\text {TM }}$ ECL (Cat\# 636) Substrate Kits were used to generate chemiluminescent signals. RLU, relative light unit. $\Delta \mathrm{RLU}=\mathrm{RLU}$ of the well with the primary antibody - RLU of the corresponding well without the primary antibody, everything else being equal. Note: When the antigen is abundant, $\mathrm{ShQ}^{\mathrm{TM}} \mathrm{ECL}$ is a better choice based on linear regression data.

Table 1. Comparison of ShQ ${ }^{\text {TM }}$ ECL and $\mathrm{PiQ}^{\mathrm{TM}}$ ECL sensitivity and background noise.

	ShQ $^{\text {TM }}$ ECL			PiQ $^{\text {TM }}$ ECL		
	w/o 1st Ab	$\mathrm{w} / 1$ st Ab	Δ RLU	w/o 1st Ab	w/ 1st Ab	Δ RLU
Lysis buffer	3056	2927	-129	130727	137531	6804
Lysis buffer w/o 2nd Ab	2860	2607	-253	122382	127826	5444
105 TCID50 SARS-CoV-2	2781	73695	70914	128401	8817960	8689559
52.5 TCID50 SARS-CoV-2	2987	30316	27329	134264	5748869	5614605
42 TCID50 SARS-CoV-2	2726	23527	20801	128083	4198178	4070095
21 TCID50 SARS-CoV-2	2767	10342	7575	131388	1797070	1665682
8.4 TCID50 SARS-CoV-2	2901	4143	1242	129277	635622	506345

Notes:

1. Different concentrations of gamma-irradiated SARS-CoV-2 viruses were lysed in the Viral Lysis Buffer (Cat\# VL101) and coated ($150 \mu \mathrm{~L}$) on microplate wells.
2. A rabbit monoclonal anti-N antibody (Cat\# VYN7, $1: 10,000$) and an HRP-conjugated highly cross-adsorbed goat anti rabbit IgG secondary antibody (Cat\# 202, 1:20,000) were used to detect SARS-CoV-2 N protein.
3. $\mathrm{ShQ}^{\mathrm{TM}}$ ECL (Cat\#707) and PiQ ${ }^{\mathrm{TM}}$ ECL (Cat\# 636) Substrate Kits were used to generate chemiluminescent signals.
4. RLU, relative light unit. $\triangle R L U=$ RLU of the well with the primary antibody - RLU of the corresponding well without the primary antibody, everything else being equal.
